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An alternative to the use of expensive auxiliaries or catalysts in the synthesis of chiral 2-substituted pyr-
rolidines is described. Thus, commercial, cheap 4-(S)-hydroxyproline was readily transformed into opti-
cally pure pyrrolidines, using a one-pot decarboxylation–alkylation reaction as the key step. In this
reaction, an acyliminium intermediate was generated, which was trapped by carbon nucleophiles. As
postulated by Woerpel, the addition of the nucleophiles to the five-membered ring iminium ions took
place stereoselectively, affording 2,4-cis-disubstituted pyrrolidines in high de. The hydroxy group at C-
4 can then be removed, or alternatively, it can be used to create new functionalities in the molecule.
In this way, optically pure alkaloid analogues and iminosugars were prepared.

� 2009 Elsevier Ltd. All rights reserved.
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The preparation of optically pure pyrrolidine derivatives has
elicited much interest, since these heterocycles are present in
many bioactive compounds (such as alkaloids or iminosugars),1

whose biological activity is often related to the stereochemistry
of the product. Among the asymmetric methodologies to prepare
substituted pyrrolidines or pyrrolidinones, the addition of nucleo-
philes to cyclic iminium ions2 bearing chiral auxiliaries has been a
key step in the synthesis of different bioactive compounds [e.g.,
conversion 1?2 (Scheme 1), in the preparation of alkaloid (�)-
205A].3 The use of chiral catalysts instead of chiral auxiliaries
avoids the protection–deprotection steps. The appropriate cata-
lysts or auxiliaries could vary for even related substrates.4

On the other hand, when five-membered ring iminium or oxo-
nium ions (such as 3a and 3b, Scheme 2) present stereogenic cen-
ters, the addition of nucleophiles is stereoselective, and the
preferred face for the addition depends on the nature of the substi-
tuent.5 Thus, Woerpel postulated that alkyl groups (such as Me) fa-
vor an envelop conformation 3a where the alkyl substituent is
equatorial. On the contrary, the alkoxy or acyloxy functions favor
an envelop conformation 3b, with a pseudoaxial OR group, due
to stabilizing electrostatic interactions between the oxygen lone
electron pairs and the iminium ion.5b In both cases, the nucleophile
adds from the inner face, to avoid eclipsing interactions on the for-
mation of the product.6

Therefore, the intermediate 3a would yield a 2,4-trans product
while the intermediate 3b would afford a 2,4-cis product.
ll rights reserved.

: +34 922 260135 (A.B.).
rhernandez@ipna.csic.es (R.
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Scheme 2. Woerpel’s stereoselectivity rules for the addition of nucleophiles to
cyclic iminium or oxonium ions.
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We reasoned that this stereocontrol effect could be used to ob-
tain optically pure pyrrolidines from inexpensive 4-(S)-hydroxy-
proline derivatives (such as the methyl carbamate 5, Scheme 3),
using a sequential process that would couple a decarboxylation
to an alkylation reaction. By using sequential processes,7 the isola-
tion of intermediates is avoided, saving materials and time and
Table 1
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Scheme 3. Stereoselective decarboxylation–oxidation–alkylation.
reducing the waste. Thus, a more sustainable chemistry is
achieved.

Our group has developed different sequential processes8a–c ini-
tiated by radical reactions,8 and we are currently exploring stereo-
selective versions of these processes. For instance, we have studied
the decarboxylation of proline derivatives where a chiral auxiliary
is attached to the nitrogen. However, these auxiliaries are expen-
sive and in many cases the stereoselectivity was not satisfactory.9

An alternative would be the use of chiral substrates where the ste-
reogenic centers could be later removed or transformed. This Letter
explores the feasibility of this approach.

Thus, 4-(S)-hydroxyproline 5 was readily converted into ether
or silyl ether derivatives 6, which were treated with (diacetoxy-
iodo)benzene and iodine under irradiation with visible light (sun-
light or commercial lamps).10 Under these conditions, a radical
decarboxylation took place, followed by oxidation of the resulting
C-radicals 7 to the acyliminium intermediates 8, which were
trapped by allylsilanes or silyl enolethers. The nucleophiles added
preferentially from the inner face of the envelop conformation,
affording 2,4-cis-pyrrolidines 9. The OR group at C-4 can be re-
moved or replaced by other functionalities, affording optically pure
substituted pyrrolidines 10.

To study the influence of the protecting group on the yield and
stereoselectivity, the hydroxyproline derivatives 11–14 (Table 1)
were used as substrates. Their R groups, which differ in volume,
are easily introduced and removed.
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The substrates underwent the scission–alkylation procedure,11

using allylTMS or silyl enol ethers as nucleophiles, affording 2-allyl
derivatives 15–1812,13 and 2-acetophenone derivatives 19–2412 in
good yields (66–91%) and in most cases, high diastereomeric ex-
cess. With relatively small-size nucleophiles such as allylTMS,
excellent stereoselectivities were observed in all cases. However,
with bulkier reagents such as PhC(OTMS)@CH2 and larger R pro-
tecting groups such as trityl and TBDPS, a mixture of diastereomers
was obtained, with the cis isomer as the major one. The attack from
the inner face would be less favored due to steric interactions be-
tween the protecting group and the nucleophile.

The 2-allyl derivatives 15–18 are ring-contracted analogues of
the poisonous coniine,14 while the 2-acetophenone derivatives
19–24 are ring-contracted analogues of sedamine.15 This method
would also allow the introduction of other substituents, affording
other alkaloid analogues.1

After the asymmetric scission–alkylation reaction, the 4-OR
group could be deprotected, and the resulting OH was removed
by radical deoxygenation, or elimination/reduction, as illustrated
with the synthesis of (+)-norconiine methyl carbamate (Scheme
4).16 Thus, the decarboxylation–allylation product 17 was desily-
lated to the alcohol 25, and the lateral chain was reduced, giving
compound 26. The removal of the 4-hydroxy group took place in
two steps and afforded the olefin 27 in good overall yield. The lat-
ter was hydrogenated, affording the pure (+)-norconiine methyl
carbamate 28.

Alternatively, the hydroxy group at C-4 could be used to intro-
duce new functionalities in the molecule. Thus, the elimination
product 27 was transformed into iminosugar derivatives 29–31
(Scheme 5). Many iminosugars are potent glycosidase inhibitors,
and display cytotoxic, antiviral, or hypoglucemic activities.17 They
are also precursors to azanucleosides, which have been used as
inhibitors of enzymes, antitumoral agents, etc.18 As a result, the
development of procedures to obtain a variety of azasugars has
an ongoing interest.

As shown in Scheme 5, the enantiopure pyrrolidine 27 was
readily converted into iminosugar 29 using a dihydroxylation reac-
tion.19 Also, the epoxidation of substrate 27, followed by ring open-
ing with sodium azide, generated compound 30. The azide group
was reduced by hydrogenation,20 yielding the iminosugar 31.21

Other functionalities can be introduced using similar strategies.
Since commercial 4-(S)-hydroxyproline can be easily trans-

formed into 4-(R)-hydroxy, alkoxy or acyloxy derivatives, this
methodology would also afford the opposite series of enantio-
mers.22 We are currently exploring the stereoselective formation
of new alkaloid and iminosugar derivatives, which will be pub-
lished in due time.
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